Hilbert-like Curves on a Hexagonal Grid and a Realization Using Crochet

2014 Joint Mathematics Meetings

Kyle Calderhead

Malone University

How This All Got Started

How This All Got Started

O

How This All Got Started

Where It Led Next

1. Pick a pattern that has no vertices with maximal or minimal possible degree.

Where It Led Next

1. Pick a pattern that has no vertices with maximal or minimal possible degree.

Space-filling curves

Where It Led Next

1. Pick a pattern that has no vertices with maximal or minimal possible degree.

Space-filling curves

$$
1
$$

Hilbert curve

Where It Led Next

1. Pick a pattern that has no vertices with maximal or minimal possible degree.

Space-filling curves

Hilbert curve

Where It Led Next

1. Pick a pattern that has no vertices with maximal or minimal possible degree.

Space-filling curves

Hilbert curve

Where It Led Next

1. Pick a pattern that has no vertices with maximal or minimal possible degree.

Space-filling curves

Hilbert curve

Where It Led Next

1. Pick a pattern that has no vertices with maximal or minimal possible degree.

Where It Led Next

1. Pick a pattern that has no vertices with maximal or minimal possible degree.
2. Why not work on a different tiling other than squares?

Where It Led Next

1. Pick a pattern that has no vertices with maximal or minimal possible degree.
2. Why not work on a different tiling other than squares?

Recursively Building Hexagonal Grids

Recursively Building Hexagonal Grids

Note that there is a choice of orientation we must make.

Recursively Building Hexagonal Grids

Finding Curves That Iterate

Finding Curves That Iterate

This isn't as easy!

Finding Curves That Iterate

This isn't as easy!

Finding Curves That Iterate

This isn't as easy!

Finding Curves That Iterate

This isn't as easy!
禺

Finding Curves That Iterate

This isn't as easy!

解

© 8 ways
6 ways
解 10 ways
6 ways

Finding Curves That Iterate

This isn't as easy!

(5) 8 ways

6 ways
的 10 ways
通 6 ways

Of all 35 possibilities, exactly zero are able to be tiled into the next iteration.

Finding Curves That Iterate

This isn't as easy!

Finding Curves That Iterate

This isn't as easy!

感

24 ways

Finding Curves That Iterate

This isn't as easy!

感

缅 24 ways but only three work in the next iteration

Finding Curves That Iterate

Finding Curves That Iterate

Finding Curves That Iterate

Finding Curves That Iterate

Finding Curves That Iterate

Finding Curves That Iterate

Summary of $2 \times 2 \times 2$ case:

- Exactly one path iterates
- It can be used four different ways
- ...but one of those ways seems to stand out as "right"

Finding Curves That Iterate

ant

3
5

Finding Curves That Iterate

Finding Curves That Iterate

Summary of $3 \times 3 \times 3$ case:

- Exactly one path iterates
- It only works one way
- There are a few useful necessary conditions

Finding Curves That Iterate

Necessary conditions

- The path must end in corners that are 120° apart
- Iterates must also end 120° apart, and agree with the chosen orientation of hexagons
- Sharp $\left(60^{\circ}\right)$ corners have to be "agree":

Finding Curves That Iterate

Necessary conditions

- The path must end in corners that are 120° apart
- It must iterate to end the same way, and agree with the chosen orientation of hexagons
- Sharp $\left(60^{\circ}\right)$ corners have to be "agree":

The Realization in Crochet

The Realization in Crochet

The Realization in Crochet

The Realization in Crochet

References

1. Akiyama, Fukuda, Ito \& Nakamura "Infinite Series of Generalized Gosper Space Filling Curves", China-Japan Conference on Discrete Geometry, Combinatorics and Graph Theory 2005
2. Norton, Anderson "Eighty-eight Thousand, Four Hundred and Eighteen (More) Ways to Fill Space", CMJ March 2009 (v. 40, no. 2)
3. Ventrella, Jeffrey Brain-filling Curves: A Fractal Bestiary, Eyebrain Books 2012

Hexagonal \& Triangular Meshes

The Standard Gosper Curve

(from Brainfilling Curves)

