Hilbert-like Curves on a Hexagonal Grid and a Realization Using Crochet

2014 Joint Mathematics Meetings

Kyle Calderhead

Malone University

How This All Got Started

How This All Got Started

THE OWNER OF

• सिमा मि
물리 되려 되려 하다 하다 나라 나라.
ममममममममममममम
मन सेन सेन सेन सेन सेन सेन सेन सेन सेन से
변원 변원 변원 변원 변원 변원 변원
말랐다. 다. 다
ныныныныныныны
माससमसमासमासमास
제학 관람 관람 관화 제학 관화 관화 규유
सि मा

How This All Got Started

1. Pick a pattern that has no vertices with maximal or minimal possible degree.

Space-filling curves

1. Pick a pattern that has no vertices with maximal or minimal possible degree.

Space-filling curves

1. Pick a pattern that has no vertices with maximal or minimal possible degree.

2. Why not work on a different tiling other than squares?

1. Pick a pattern that has no vertices with maximal or minimal possible degree.

2. Why not work on a different tiling other than squares?

Recursively Building Hexagonal Grids

Recursively Building Hexagonal Grids

Note that there is a choice of orientation we must make.

Recursively Building Hexagonal Grids

 \bigcirc

This isn't as easy!

8 ways 6 ways 10 ways 6 ways

This isn't as easy!

8 ways 6 ways 10 ways 6 ways

Of all 35 possibilities, exactly zero are able to be tiled into the next iteration.

This isn't as easy!

24 ways but only three work in the next iteration

Summary of 2x2x2 case:

- Exactly one path iterates
- It can be used four different ways
- ...but one of those ways seems to stand out as "right"

Summary of 3x3x3 case:

- Exactly one path iterates
- It only works one way
- There are a few useful necessary conditions

Necessary conditions

- The path must end in corners that are 120° apart
- Iterates must also end 120° apart, and agree with the chosen orientation of hexagons
- Sharp (60°) corners have to be "agree":

Necessary conditions

- The path must end in corners that are 120° apart
- It must iterate to end the same way, and agree with the chosen orientation of hexagons
- Sharp (60°) corners have to be "agree":

References

- 1. Akiyama, Fukuda, Ito & Nakamura "Infinite Series of Generalized Gosper Space Filling Curves", *China-Japan Conference on Discrete Geometry, Combinatorics and Graph Theory* 2005
- 2. Norton, Anderson "Eighty-eight Thousand, Four Hundred and Eighteen (More) Ways to Fill Space", *CMJ* March 2009 (v. 40, no. 2)
- 3. Ventrella, Jeffrey *Brain-filling Curves: A Fractal Bestiary*, Eyebrain Books 2012

Hexagonal & Triangular Meshes

The Standard Gosper Curve

(from **Brainfilling Curves**)